Vom Roheisen zum Stahl:
Das im Hochofenprozess entstandene Roheisen ist als Werkstoff leider kaum zu gebrauchen. Es enthält verschiedene Verunreinigungen. Diese sind die Elemente Kohlenstoff, Mangan, Silizium, Phosphor, Schwefel u.a., wobei Kohlenstoff mit 3-5% anteilsmäßig wesentlich mehr enthalten ist als die anderen unerwünschten Begleitelementen. Kohlenstoff und die anderen Verunreinigungen bewirken, dass das Roheisen spröde (brüchig) wird und sich schlecht schmieden (verformen) lässt, aber auch, dass es schneller schmilzt als reines Eisen. Weiterverarbeitung: Stahl: Verfahren zur Stahlherstellung: Am Anfang der Reaktion steht eine wassergekühlte Lanze, die in die Schmelze des Konverters gehalten wird.
Durch diese Lanze wird reiner Sauerstoff mit einem Druck von etwa 10bar geblasen. Der Sauerstoff oxidiert die Begleitelemente und die entstehenden gasförmigen Oxide (die Gase Kohlenmonoxid, Kohlendioxid und Schwefeldioxid) entweichen durch die Konverteröffnung in den Abgaskamin oder lagern sich an der Oberfläche der Schmelze ab (alle festen/flüssigen Oxide), wo sie zusammen mit vorher zugegebenem Kalkstein die sogen. Schlacke bilden. Nach etwa einer halben Stunde ist der Gehalt an Fremdelementen in der Schmelze stark gesenkt. Die Schlacke und die Stahlschmelze werden getrennt voneinander abgestochen, d.h. aus dem Konverter in einen Transportkübel gegossen. Dann folgt der Prozess der Rückkopplung, bei der man noch etwas kohlenstoffhaltiges Eisen hinzu gibt, um den Kohlenstoffgehalt des Stahls zu regulieren, den dieser darf nicht zu klein werden.
Das zweite wichtige Stahlherstellungsverfahren ist das Elektrostahlverfahren. In einem Elektroofen wird das Roheisen auf Temperaturen um 3000°C gebracht. Dies erreicht man durch anlegen einer Spannung zwischen zwei Graphitelektroden, zwischen denen sich dann ein sogenannter Lichtbogen bilden. Außer dem Roheisen wird Schrott zugegeben, dessen Sauerstoffanteil die Begleitelemente oxidiert. Dann setzt man Legierungsmetalle in bestimmten Mengen direkt hinzu, so dass eine Stahllegierung entsteht. Stähle, die im Elektroofen erzeugt wurden, heißen Elektrostähle und sind besonders hochwertig. Stahlsorten: Kohlenstoffstähle sind nichtlegierte Stahlsorten, die über 80% des weltweit erzeugten Stahls ausmachen. Es gibt viele Kohlenstoffstähle mit unterschiedlichem Kohlenstoffgehalt. Stähle mit einem Gehalt von weniger als 0,25% Kohlenstoff sind leicht verformbar und werden zur Herstellung von Blechen, Konservendosen, Autokarosserien, Drähten und Nägeln verwendet. Liegt der Kohlenstoffgehalt zwischen 0,25% und 0,7% wird der Stahl härter und lässt sich weniger leicht verformen. Daher wird dieser Kohlenstoffstahl für Eisenbahnschienen, im Maschinenbau, sowie im Stahlbau hauptsächlich verwendet. Die höchste Kohlenstoffkonzentration im Stahl beträgt 0,7% bis 1,5% – der Stahl ist somit sehr hart und kaum verformbar. Seine Verwendung findet Anwendung in der Chirurgie (Chirurgische Instrumente), in der Werkzeugherstellung, sowie als Rasierklingen und Stahlfedern.
Eigenschaften: Bei niedrigem Kohlenstoffgehalt sind die Stähle leicht verformbar und haben eine geringe Zugfestigkeit.
Bei hohem Kohlenstoffgehalt aber herrschen eine hohe Zugfestigkeit und eine schwere Verformbarkeit vor.
Unterschiede Zwischen Stahl und Gusseisen:
Einige Legierungen
Ökologische Aspekte der Stahlherstellung: Vor dem Hintergrund von Klimaveränderungen durch C02 -Emissionen bedarf es in der Stahlindustrie, die wegen der Koksmetallurgie ein Hauptverwerter fossiler Brennstoffe ist, einer ständigen Kontrolle nicht nur der Prozesswirtschaftlichkeit, sondern auch der Umweltverträglichkeit und des Energieverbrauchs der eingesetzten Technologien. Dies gilt für bestehende Anlagen ebenso wie für den Aufbau neuer Kapazitäten – und zwar global, da (teurer) Umweltschutz nicht durch Standortverlagerung aufgrund laxerer Gesetzgebung in Entwicklungsländern umgangen werden darf. Prinzipiell bieten sich zwei Ansätze für Stahlerzeuger an: Optimierung der Kreislaufwirtschaft und präventive Abfallwirtschaft durch produktionsintegrierten Umweltschutz. Die Kreislaufwirtschaft des klassischen Integrierten Hüttenwerkes, das aus Erz und Koks Stahl über die klassische Route – Hochofen, Stahl- und Walzwerk – erzeugt, wurde seit dem Beginn der Industrialisierung ständig optimiert. Die bedeutendsten Meilensteine der Nachkriegszeit sind die Entwicklung des Sauerstoff Aufblas-Verfahrens („LD-Verfahrens“) zur Stahlerzeugung und die Einführung des Stranggießverfahrens. Letzteres löste den Blockguss ab und ermöglichte eine Einsparung von weltweit etwa 100 Millionen t Eigenschrott. Trotzdem steigt das Schrottangebot, aber ein Integriertes Hüttenwerk kann da nur begrenzt nachkommen, da im Sauerstoff Aufblas-Verfahren nur etwa ein Viertel der Rohstahlmenge durch Schrott bereitgestellt werden kann. Im Elektrostahlwerk können hingegen bis 100 Prozent Schrott verarbeitet werden. Obwohl diese Art der Stahlerzeugung nur etwa halb so viel Energie wie das LD-Stahlwerk benötigt, exportiert die rohstoffarme Bundesrepublik Deutschland jährlich rund 8 Millionen t Stahlschrott. Der Export des Rohstoffes „Schrott“ soll in Zukunft zu Gunsten einer umweltorientierten Kreislaufwirtschaft reduziert werden. Die (noch) geringen Elektrostahlkapazitäten in Deutschland werden derzeit durch Neubauten in Unterwellenborn, Peine und Georgsmarienhütte erweitert,
Durch konsequente Stoffflussoptimierung und Restwärmeausnutzung ist die Stahlerzeugung auf Erzbasis im Integrierten Hüttenwerk bezüglich ihrer Schadstoffbelastung für Boden, Luft und Wasser nicht mehr wesentlich zu verbessern. Der Energieverbrauch bei der Stahlherstellung wird hauptsächlich durch das mehrmalige Wiedererwärmen auf dem Weg von Kokerei bis Warmwalzwerk bestimmt.
Dem Produktionsintegrierten Umweltschutz kann durch intelligente Anwendung und innovative Erzeugung von Stahl nachgekommen werden. Beispielsweise birgt die Entwicklung hochfester
Stahlsorten mit Hilfe moderner Stähle und Konstruktionsmethoden ein erhebliches Energieeinsparungspotential bei der Verwendung als Karosseriewerkstoff. Durch eine optimierte thermomechanische Behandlung lassen sich bereits im Herstellungsprozess, bei der Verarbeitung und Nutzung sowie durch die bestens eingeführte Wiederverwertung bilanzielle Vorteile von Stahl als Karosseriewerkstoff ableiten.
|